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 We did an example of a Hooke’s law restoring force in 1D: xxkF 
−= , with an equilibrium 

point at 0=x .  The corresponding potential is 2

2
1)( kxxU = , with 0)0( =U .  The mechanical energy 

is conserved:  22

2
1

2
1 kxxmE +=  .  As the particle moves it exchanges energy back and forth between 

kinetic and potential energies.  Note that the force can be derived from the potential energy function 
through the 1D gradient, which is a total derivative: dxxdUF /)(tan −= . 

 The energy landscape created by the function )(xU  is very revealing.  If there is a maximum or 

minimum in )(xU  it means that the driving force at that location is 0tan =F .  As such, this represents 

an equilibrium point.  A minimum in )(xU  is a stable equilibrium because a small displacement will 

result in forces that point back to the equilibrium point.  This is the case when 0/)( 22 >dxxUd .  A 

local maximum in )(xU  is unstable because a small displacement in either direction produces forces 

that draw the particle further away.  This is the case with 0/)( 22 <dxxUd . 

One-dimensional problems, although they appear to be artificial, pop up frequently in the 
solution of three-dimensional problems.  So far we have no mention of time in the evolution.  We can 
find the position of the particle )(tx starting with the mechanical energy, and at least one additional 

piece of information (the sign of �̇�).  We showed that the statement of mechanical energy conservation 

can be re-written as ∫ −
=

x

x xUE
dxmt

0
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.  This can be solved for )(tx , and from that one can 

determine the velocity, acceleration, etc. as functions of time.  We did problem 4.28 from HW 3 and 
solved the above equation for )(tx for a simple harmonic oscillator. 

 We considered energy for motion in curvilinear one-dimensional systems.  An example is a car 
moving on a roller coaster track.  Consider a particle confined to move along a one-dimensional ‘track’ 

parameterized by its displacement s from some arbitrary origin.  It has a kinetic energy 2

2
1 smT = .  The 

kinetic energy can be altered by applying a tangential force and doing work on the particle.  Newton’s 
second law can be stated as netFsm = .  If the tangential force is conservative, then you can define a 

potential energy U , and a total mechanical energy UTE += . 
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We next considered central forces.  These are forces that are everywhere directed toward a 

fixed force center.  Such a force has the form rrfrF 
)()( = .  If further the force is spherically 

symmetric, then the scalar function depends only on the radial distance and not the angular 
coordinates: )()( rfrf =


.   

There are two statements that can be made about central forces: 

1) A central force that is conservative is automatically spherically symmetric, 
2) A central force that is spherically symmetric is automatically conservative. 

We proved the first of these two statements.  If the force is conservative, then it can be represented in 

terms of the gradient of a scalar potential: )(rUF 
∇−= .  Using the gradient in spherical coordinates, 

derived in class ( φθφθθ ∂∂+∂∂+∂∂=∇ /)sin/(/)/(/ rrrr


), we find that a central force 

(dependent on r  only) requires that 0// =∂∂=∂∂ φθ UU .  This means that the potential energy 

depends only on the radial coordinate: )(rUU = .  In turn, the central force can only depend on the 

scalar radial coordinate: rrUrF ∂∂−= /)(
, which means that it is spherically symmetric (i.e. no 

dependence of the potential and force on the angular coordinates φθ , ).  The one-dimensional nature 

of the potential energy and force will have benefits later when we look at the two-body problem. 

 

 

 


